Speed Post News Network

New Delhi : The recent advisories by the Ministry of Home Affairs to ensure online communication via secure platforms have highlighted the increasing need for measures to ensure security in the virtual world as Covid-19 confines most day to day activities to the digital space. The secure part of any information transfer protocol is in the distribution of the key used to encrypt and decrypt the messages. Such standard key distribution schemes, usually based on mathematical resolution of problems, are vulnerable to algorithmic breakthroughs and possibility to run new codes on the up and coming quantum computers.

The solution to ensuring the security of the key transfer process lies in using the laws of quantum physics, wherein any eavesdropping activity will leave tell-tale signs and hence will be easily detected. This is achieved by using Quantum Key Distribution or QKD, according to a PIB release.

To tackle this challenge, researchers from Raman Research Institute (RRI), an autonomous institute of the Department of Science & Technology (DST), Government of India, have come up with a unique simulation toolkit for end-to-end QKD simulation named as ‘qkdSim’, which is based on modular principles that allow it to be grown to different classes of protocols using various underpinning technologies.

The research led by Prof. Urbasi Sinha and her team, in collaboration with Prof. Barry Sanders from the University of Calgary, Canada, is a part of the Quantum Experiments using Satellite Technology (QuEST) project, India’s first satellite-based secure quantum communication effort, supported by the Indian Space Research Organisation (ISRO). This work is going to appear in the journal Physical Review Applied (in press).

The novelty of their toolkit lies in its exhaustive inclusion of different experimental imperfections, both device-based as well as process-based. Thus their simulation results will match with actual experimental implementations to much better accuracy than any other existing toolkit making it a QKD experimenter’s best friend.

As QKD is growing rapidly in academic, industrial, government, and defence laboratories, this newly developed simulation toolkit, accompanied by an instructive application to the uniquely designed B92 experiment, will be extremely influential. The B92 is a QKD protocol, which uses single photons and associated laws of Physics like the Uncertainty Principle and the No-Cloning theorem to assure perfect security.

“Secure error free communication protocols are assuming extraordinary importance for which Quantum key distribution (QKD) is an attractive solution, which relies on a cryptographic protocol. A shared random secret key known only to the communicating parties is employed to encrypt and decrypt messages. A unique property of quantum key distribution is that any break in attempt by an sarty is immediately detected. This is because any process of measuring a quantum system creates detectable anomalies,” said Prof Ashutosh Sharma, Secretary, DST.